![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Властивості функції розподілуВластивість 1. Значення функції розподілу належать відрізку [0, 1]:
Доведення. Властивість витікає з визначення функції розподілу як ймовірності: ймовірність завжди є невід’ємне число, що не перевищує одиниці. Властивість 2. F(х) - не спадна функція, тобто
Доведення. Хай
Звідси
або
Оскільки. будь-яка ймовірність є число невід’ємне, то Наслідок 1. Імовірність того, що випадкова величина прийме значення, укладене в інтервалі (а, b), рівна приросту функції розподілу на цьому інтервалі:
Цей важливий наслідок витікає з формули (*), якщо покласти x1=a і х2=b. Наслідок 2. Імовірність того, що безперервна випадкова величина Х прийме одне певне значення, рівна нулю. Дійсно, поклавши у формулі (**) а=x1, b=x1+Dx, маємо
Спрямуємо Dx до нуля. Оскільки Х - безперервна випадкова величина, то функція F(х) безперервна. Через неперервність F(х) в точці х1 різниця
Наприклад, рівність Таким чином, не представляє інтересу говорити про імовірність того, що безперервна випадкова величина прийме одне певне значення, але має сенс розглядати імовірність попадання її до інтервалу, хай навіть скільки завгодно малого. Цей факт повністю відповідає вимогам практичних задач. Наприклад, цікавляться імовірністю того, що розміри деталей не виходять за дозволені границі, але не ставлять питання імовірності їх співпадіння з проектним розміром. Відмітимо, що було б неправильним думати, що рівність нулю імовірності Р(Х=х1) означає, що подія Х=xl неможлива (якщо, звичайно, не обмежуватися класичним визначенням імовірності). Дійсно, результаті випробування випадкова величина обов’язково прийме одне з можливих значень; зокрема, це значення може виявитися рівним х1. Властивість 3. Якщо можливі значення випадкової величини належать інтервалу (а, b), то: 1) F(x)=0 при Доведення. 1) Хай 2) Хай Наслідок. Якщо можливі значення безперервної випадкової величини розташовані на всій осі х, та справедливі наступні граничні співвідношення:
Читайте також:
|
||||||||
|