МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||||||||||
ЧИСЛОВІ ХАРАКТЕРИСТИКИ ДИСКРЕТНИХ ВИПАДКОВИХ ВЕЛИЧИНРис. 1 Графік функції розподілу Доведені властивості дозволяють представити, як виглядає графік функції розподілу безперервної випадкової величини. Графік розташований в смузі, обмеженій прямими у=0, у=1 (перша властивість). При зростанні х в інтервалі (а, b), у якому укладені всі можливі значення випадкової величини, графік підіймається вверх (друга властивість). При ординати графіка рівні нулю; при ординати графіка рівні одиниці (третя властивість). Графік функції розподілу безперервної випадкової величини зображений на рис. 1. Зауваження. Графік функція розподілу дискретної випадкової величини має ступінчастий вигляд (рис. 2).
Приклад. Дискретна випадкова величина Х задана таблицею розподілу
Знайти функцію розподілу і накреслити її графік. Розв’язок. Якщо то (третя властивість) Якщо , то . Дійсно, Х може прийняти значення 1 з ймовірністю 0,3. Якщо , то . Дійсно, якщо х задовольняє нерівність , то дорівнює ймовірності події , яка може бути здійснена, коли Х прийме значення 1 (ймовірність цієї події дорівнює 0,3) або значення 4 (ймовірність цієї події дорівнює 0,1). Оскільки ці дві події несумісні, то за теоремою додавання ймовірностей ймовірність події рівна сумі ймовірностей 0,3+0,1=04. Якщо , то. Дійсно, подія достовірна, отже, її ймовірність дорівнює одиниці. Отже, функція розподілу аналітично може бути записана так: Графік цієї функції наведений на рис. 3. Рис. 2.
Запитання для самоперевірки:
Як уже відомо, закон розподілу повністю характеризує випадкову величину. Однак часто закон розподілу невідомий і доводиться обмежуватися меншими відомостями. Іноді навіть вигідніше користуватися числами, які описують випадкову величину сумарно; такі числа називають числовими характеристикам випадкової величини. До числа важливих числових характеристик ставиться математичне сподіванння і дисперсія.
Читайте також:
|
||||||||||||||||
|