МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Розділ 3. Оптичні властивості квантових точок
У хімії залежні від розміру колоїдних напівпровідникових частинок оптичні спектри спостерігалися з початку минулого сторіччя, наприклад, для колоїдів , хоча тільки наприкінці сторіччя це явище отримало назву „розмірне квантування”. Як вже згадувалося вище, найбільш вражаючим ефектом у напівпровідникових наночастинках є збільшення забороненої зони між найвищими зайнятими електронними станами (верх валентної зони) та найнижчими незайнятими станами (дно зони провідності). Це прямо впливає на оптичні властивості квантових точок. Мінімальна енергія, потрібна для створення електронно-діркової пари у квантовій точці („екситон”), визначається її забороненою зоною (). Світло з енергією, нижчою ніж , не може бути поглинуте квантовою точкою. Оскільки заборонена зона (енергетична щілина) залежить від розміру квантової точки, початок поглинання також залежить від розмірів. На рис. 3.1 показано, що менші квантові точки мають спектри поглинання, які є зміщеними до коротших довжин хвиль по відношенню до більших квантових точок і до масивного матеріалу [3]. Екситони у напівпровідниках мають певний час життя завдяки рекомбінації фотозбудженої електрон-діркової пари. У квантових точках енергія, що вивільнюється при анігіляції екситону, занадто велика для дисипації коливальними модами. Замість цього вона вивільнюється у вигляді емітованих фотонів. Радіаційне згасання через емісію фотонів, іншими словами флуоресценція, є високоімовірним каналом згасання у квантових точках.
Рис. 3.1. Поглинання (суцільні лінії) та емісійні лінії (штрихові лінії) колоїдних квантових точок різних розмірів. Піки поглинання зелений/жовтий/оранжевий/червоний флуоресцентних нанокристалів з діаметрами 2.3/3.8/4.0/4.6 нм спостерігаються при 507/547/580/605 нм. Піки флуоресценції спостерігаються при 528/570/592/637 нм. Як і у випадку органічних флюорофорів, область енергій, емітованих з колоїдної точки після збудження, центрована у значенні, яке менше ніж те, що потрібно для збудження зразка (і котре має бути принаймні такої ж величини, як її заборонена зона). Іншими словами, довжина хвилі флуоресценції є більшою, ніж l поглинутого світла. Зсув між найнижчим піком енергії у спектрі поглинання квантових точок і відповідним емісійним піком називають стоксовим зсувом. Для пояснення стокового зсуву необхідна більш досконала модель, ніж та, що показана на рис. 1.2. [7]. У квантових точках стоксів зсув пояснюється їх екситонною структурою. Більш складні теоретичні моделі та обчислення показують, що основний стан екситону у точці має загальний кутовий момент, рівний нулю. У дипольному наближенні утворення екситону через поглинання фотону призводить до екситонного стану з кутовим моментом . Енергія, потрібна для такого збудження, є енергією поглинання. У квантових точках збуджений стан релаксує дуже швидко у стан з кутовим моментом 2. Ця релаксація є нерадіаційною. У першому наближенні такий цей стан не може релаксувати в основний стан з кутовим моментом 0 шляхом емітування фотону, тому що дозволені тільки переходи, що змінюють кутовий момент на . Оскільки у першому наближенні ніякого фотону не може бути емітовано, цей стан називають „темний екситон”. Але слабкі збурення кристалічної решітки і навіть слабка взаємодія з фононами дозволяє цьому стану релаксувати через емісію фотона. У результаті час згасання флуоресценції є великим і енергія флуоресценції є червоно-зсунутою по відношенню до краю поглинання. Модель темного екситону підтверджується багатьма експериментами. Положення піку люмінесценції також залежить від середнього розміру квантової точки і його ширина корелює з розподілом нанокристалів по розмірах (рис. 3.1 та 3.2). Положення максимуму спектру емісії та його ширина можуть бути використані для оцінки середнього розміру та розподілу по розмірах при рості нанокристалу. Деякі суттєві особливості відрізняють самоорганізовані та колоїдні квантові точки. Наприклад, ультравузькі піки флуоресценції спостерігалися у спектрах емісії одиничний самоорганізованих квантових точок. Колоїдні напівпровідникові квантові точки мають дуже вузький розподіл по розмірах, як це спостерігається в електронній мікроскопії на пропускання. Тим не менше, при вимірюванні ансамблів їх спектри емісії мають повну ширину на половині максимуму у декілька меВ. Хоча ця широка область емісійних енергій була початково приписана залишковому розподілу по розмірах, зараз її приписують власній властивості колоїдних квантових точок. Хоча емісійний пік з одинокої колоїдної квантової точки може мати ширину менше, ніж 0.1 меВ, але її емісійний спектр зсувається випадково з часом. Цю властивість називають спектральними стрибками або спектральною дифузією. Спочатку це спостерігалося при кріогенних температурах, а зараз і при кімнатній. Спектральна дифузія імовірно пов’язана з локальним оточенням квантових точок, яке створює швидко флуктуючі електричні поля, що можуть збурювати енергетичні рівні системи. Аналогічно спектральна дифузія може також спостерігатися в органічних флуорофорах. Навпаки, самоорганізовані квантові точки, занурені у матрицю, не показують спектральних стрибків, тому що їх локальне оточення не змінюється з часом. У самоорганізованих квантових точках при високій потужності накачки можуть спостерігатися і вивчатися мультиекситонні стани, але вони ніколи не спостерігалися у колоїдних кантових точках. Відсутність мультиекситонів у одиноких колоїдних квантових точках корелює з перериванням флуоресценції, що спостерігається у цих системах. Флуоресцентна емісія з однієї квантової точки показує поведінку “вкл./викл.”, яку називають мигтінням і яка є другою спектроскопічною особливістю, що відрізняє колоїдні квантові точки від самоорганізованих квантових точок. Ця поведінка є аналогічною органічним флуорофорам. Мигтіння у квантових точках може спостерігатися у стандартному епіфлуоресцентному мікроскопі. У нанокристалі час викл. може змінюватися від мілісекунд до декількох хвилин. Механізм мигтіння вважається таким, що містить фотоіонізацію колоїдних квантових очок. У цій моделі, якщо дві електрон-діркові пари одночасно присутні всередині квантових точок, енергія, що вивільнюється шляхом анігіляції однієї електрон-діркової пари, передається інший парі. Цей надлишок може інжектувати один з носіїв у оточення квантової точки, залишаючи квантову точку зарядженою. Якщо електрон-діркова пара утворюється протягом цього часу, енергія, яка вивільнюється такою рекомбінацією, передається третьому носію, що залишається [7]. Рис. 3.2. Колоїдні квантові точки різного розміру, розчинені у хлороформі. Розмір квантових точок зростає зліва направо. а - фотографія розчинів; б - фотографія розчинів при УФ-опроміненні знизу. Спостерігаються різні кольори флуоресценції. Ось чому іонізовані квантові точки не емітують через нерадіаційний процес. Якщо ежектований носій повертається усередину квантової точки або якщо квантова точка нейтралізована, радіаційна емісія відновлюється. Імовірність проходження Оже-процесів у нанокристалах є вищою, ніж у масивному тілі, завдяки порушенню трансляційної симетрії. Така ймовірність також пов’язана з просторовим перекриттям хвильових функцій носіїв, і по цій причині є вищою у колоїдних квантових точках порівняно з самоорганізованими; перші є набагато меншими, ніж останні. Імовірність Оже-процесів зростає у подальшому у випадку кінцевих і дефектних бар’єрів, які надають широку область електронних станів, де можуть бути локалізовані збуджені носії. Це є випадком колоїдних квантових точок, але не самоорганізованих квантових точок, занурених в неорганічну бездефектну товсту матрицю [6]. Читайте також:
|
||||||||
|