МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||
Критерій Пірсона. Критерій КолмогороваДомашнє завдання 11.1 За даними вибірки 8,5 8,4 7,95 7,7 8,0 8,25 8,2 8,2 8,45 8,5 8,8 8,0 8,3 8,3 8,25 8,0 знайти довірчі інтервали для оцінки математичного сподівання а нормального розподілу з надійністю γ=0,95; 0,99; 0,999. 11.2 Відомі середнє квадратичне відхилення нормального розподілу випадкової величини Х, вибіркова середня в, об’єм вибірки n. Знайти довірчий інтервал для математичного сподівання а при заданій надійності = 0,99: = 6; в = 20,2; n = 100. 11.3 Приведено дані виробітку на одного робітника із 65 робітників у звітному році в процентах у відношенні з минулим роком: 105; 120; 97; 130; 80; 95; 100; 85; 115; 80; 105; 100; 105; 97; 80; 130; 97; 105; 100; 80; 120; 97; 195; 95; 97; 130; 100; 120; 80; 105; 100; 105; 97; 110; 115; 80; 97; 100; 110; 80; 130; 80; 97; 100; 105; 100; 80; 120; 97; 195;115; 105; 120; 97; 130; 80; 110; 105; 115; 97; 80; 105; 100; 100; 80. Знайти довірчий інтервал для математичного сподівання при = 0,95. Нехай випадкова величина X розподілена за законом F (xi; qj) і нехай на основі вибірки х1, х2, .... , хn, здобутої із генеральної сукупності з функцією розподілу F (xi; qj), робимо деякі припущення (гіпотези): або про вид функції F (xi; qj), або про параметри qj цієї функції. Припущення такого роду називаються статистичними гіпотезами. Статистична гіпотеза називається параметричною, якщо в ній сформульовані припущення відносно значень параметрів функції розподілу відомого виду, непараметричною - якщо в ній сформульовані припущення відносно виду самої функції розподілу. Статистичні гіпотези поділяються на нульові Н0 (основні) і альтернативні Н1 (конкуруючі). Перевірка статистичних гіпотез здійснюється на основі даних вибірки. Для цього застосовують певну виборчу статистику К, яка є функцією спостережених значень, точний або приблизний розподіл якої відомий. Випадкову величину К, за допомогою якої приймається рішення про прийняття або відхилення нуль - гіпотези, називаються статистичним критерієм. Статистичним критерієм значущості називається правило відхилення нульової гіпотези, яке заключається в розбитті області можливих значень випадкової величини К на дві під області, що не перетинаються, причому нульова гіпотеза відхиляється, якщо спостережне значення критерію К належить критичній під області і вважається узгодженою з дослідним, якщо К не належить критичній під області. При цьому, так як рішення приймається на основі вибірки скінченого об'єму, дослідник може зробити слідуючи помилки: а) прийняти невірну гіпотезу (помилка першого роду); в) відхилити вірну гіпотезу (помилка другого роду). Ймовірність зробити помилку першого роду Р (Н1/ Н0) = α – називається рівнем значущості статистичного критерію. Величину 1 - Р (Н1/ Н0) = 1 - β називають потужністю критерію. Перевірка гіпотези про припущений закон розподілу проводиться за допомогою непараметричних критеріїв значущості. Основна група непараметричних критеріїв значущості - критерії згоди, за допомогою яких перевіряються нульові гіпотези відносно загального вигляду функцій розподілу. Задача визначення критерію згоди ставиться у такий спосіб: нехай х1, х2,..., хn – випадкова вибірка, тобто спостережені значення випадкової величини X, і нехай f*(х) – статистична щільність розподілу; задамо деяку невід'ємну міру D відхилення емпіричної функції f*(х) від гіпотетичної теоретичної функції f(х). D = D{f*(х),f(х)}. Найбільш поширені критерії згоди: критерій Пірсона χ2, λ – критерій Колмогорова. Критерій згоди Пірсона χ2. Нехай випадкова величина має функцію розподілу ймовірностей F (х), яка належить деякому класу функції Ω визначеного виду (нормальних, показникових, біномінальних та інших) і нехай з генеральної сукупності вилучена вибірка об'єму n: х1, х2,..., хn. Треба перевірити нульову гіпотезу Н0: F(x) Ω при конкуруючій гіпотезі Н1: F(x) Ω. Схема міркувань при перевірці гіпотези Н0 за допомогою критерію згоди Пірсона складається з подальшого: висуваємо гіпотезу Н0: X ~ N(α;σ) випадкова величина розподілена за нормальним законом, при конкуруючій гіпотезі Н1: X ~ N(α;σ), випадкова величина не розподілена за нормальним законом. Для перевірки гіпотези: 1) Складають згрупований статистичний ряд. 2) Обчислюють ймовірності попадання випадкової величини X у часткові інтервали (xj-1; xj) ,для цього треба попередньо пронормувати величину, тобто знайти значення . Pj = P{xj-1 < X < xj} = P{uj-1 <X <uj}= Ф(uj) –Ф(uj-1). 3) Визначають теоретичні частоти прі часткових інтервалів. 4) Обчислюють вибіркову статистику (критерій) Якщо нульова гіпотеза вірна, то при n → ∞ закон розподілу даної статистики χ2, незалежно від виду функції F (х), прямує до закону розділу χ2 з числом ступенів вільності f = k - r - 1 (k – кількість інтервалів; r – кількість параметрів гіпотетичної функції F (х)). 5) По таблицям χ2 – розподілу (див. додатки), по заданому рівню значущості a і кількості степенів вільності f = k - r - 1 (для нормального розподілу r = 2) знаходять критичне значення χa 2(f) порівнюючи значення вибіркової статистики χ2, що спостерігається з критичним значенням χα2 (f) і приймають одне з двох рішень: - якщо χ2 < χα2 (f) , то не існує потреби для відхилення нульової гіпотези; - якщо χ2 ≥ χα2 (f) , то приймається конкуруюча гіпотеза Н1. Читайте також:
|
||||||||
|