1) Множина дійсних чисел із звичайними операціями додавання і множення є алгеброю.
2) Множина комплексних чисел з операціями додавання і множення комплексних чисел є двовимірною алгеброю над полем . Множення векторів однозначно визначається заданням добутків базисних векторів . Ці добутки зручно задавати у вигляді таблиці:
.
–1
3) Розглянемо -вимірний арифметичний векторний простір над полем , тобто множину наборів, , з покоординатним додавання і множенням на числа з . Визначимо в ньому операцію множення покоординатно:
.
Ця операція перетворює -вимірний арифметичний векторний простір над полем в алгебру над полем .
4) Множина всіх квадратних матриць порядку з елементами з поля утворює алгебру відносно звичайних операцій додавання і множення матриць. Алгебра є скінченновимірною розмірності .
5) Сукупність всіх многочленів від змінної з коефіцієнтами з поля відносно операцій додавання і множення многочленів утворює нескінченновимірну алгебру.
6) Якщо – векторний простір над полем , то лінійні оператори (автоморфізми) в просторі утворюють алгебру . Ця алгебра є скінченновимірною або нескінченновимірною в залежності від того, скінченновимірним або нескінченновимірним є векторний простір .
7) Розглянемо векторний простір над полем з базисом . Визначимо в ньому операцію множення за допомогою таблиці множення базисних векторів:
.
–1
–1
–1
Легко перевірити, що таким чином утворюється алгебра над полем . Ця алгебра називається алгеброю кватерніонів. Історично це є один з перших прикладів алгебр.
Чотиривимірна алгебра кватерніонів в деякому розумінні унікальна. Вона була відкрита ірландським математиком і механіком У. Гамільтоном, який поставив собі проблему побудувати алгебру, елементи якої мають всі властивості комплексних чисел. Для кватерніонів дійсно виконуються всі властивості комплексних чисел, крім одного – операція множення кватерніонів некомутативна.
8) Нехай задана деяка група і векторний простір . Визначимо в ньому операцію множення за допомогою таблиці множення елементів групи. Таке множення задає структуру алгебри, яка називається груповою. Позначається .