МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||||||||||||||||||||
Розподіл статистичної сукупності зафакторною Х та результативною У ознаками
Позначення: – відповідно нижня та верхня межі і-го (j-го) інтервалу значень ознаки Х (Y), при цьому ; fij – число пар (хе; уе), для яких хе [ і уе [ j); fi (gj) – число пар (хе; уе), для яких хе [ (уе [ )). При проведенні комбінаційного групування кількість m (l) інтервалів значень ознаки Х (Y) та їх ширина hxi (hyj) вибираються дослідником суб’єктивно або на основі, наприклад, рекомендацій, наведених у л. р. № 1 для побудови і. в. р. При цьому бажано, щоб групи (або інтервали) були кількісно однорідними і m, l 3. Вважатимемо групу кількісно однорідною, якщо розподіл ознаки всередині відповідного інтервалу близький до рівномірного. Очевидно, що – обсяг сукупності. Маючи таблицю 3.1. можна провести попередній аналіз взаємозалежності між Х та Y за таким очевидним правилом: – якщо частоти fij, розташовані приблизно на головній діагоналі таблиці (тобто між її лівим верхнім та правим нижнім кутами), суттєво більші за інші або ці інші частоти, в основному, дорівнюють нулю, то є підстави припустити наявність прямого зв’язку між фактором Х та результатом Y; – якщо вищенаведені співвідношення між fij мають місце для побічної діагоналі таблиці, то можна припустити наявність зворотного зв’язку між Х та Y; – якщо всі частоти fij розподіляються приблизно рівномірно по всіх клітинках таблиці, то логічно припустити, що зв’язок між Х та Y відсутній. В інших випадках, тобто, коли частоти fij суттєво відрізняються одна від одної, але візуальний їх аналіз не дає можливості висунути певне припущення про наявність або напрям зв’язку, виникає необхідність формалізації перевірки можливої залежності між ознаками. Формально перевірку істотності (тобто, існування) зв’язку можна виконати за допомогою критерія Пірсона , спостережене значення якого обчислюється за даними таблиці 3.1 за формулою:
За таблицею критичних точок критерія (див. додаток 6) знаходимо критичне його значення в залежності від рівня значущості і числа степенів вільності після чого перевірка здійснюється за правилом: якщо то вважаємо зв'язок істотним (тобто, існуючим) з надійністю якщо то зв'язок вважається відсутнім з тією ж надійністю. Величина являє собою імовірність ризику зробити помилку, оцінивши зв'язок як істотний при фактичній його відсутності. На практиці число вибирають не більшим за 0,1. Якщо перевірка за критерієм Пірсона підтвердила істотність зв’язку, то його щільність можна оцінити за допомогою коефіцієнта спряженості Крамера, який обчислюється за формулою: де n − обсяг сукупності. Величина С може набувати значень від 0 до 1: . При цьому щільність зв’язку оцінюється за правилом: чим ближче значення С до1 (0), тим зв'язок більш (менш) щільний. При бажанні вимірювання щільності залежності можна формалізувати, керуючись правилом трисекції:залежністьбудемо вважати – щільною (або тісною), якщо ; – помірною(абосередньою), якщо ; – слабкою(абонезначною), якщо , де
Висновки, зроблені за результатами застосування вищенаведеного правила слід вважати вірними з тією ж надійністю . Читайте також:
|
||||||||||||||||||||||||||
|