Дисперсія (середній квадрат відхилень) має певні математичні властивості, урахування яких дає змогу суттєво спростити її обчислення.
1. Якщо всі значення варіант зменшити на будь-яке стале число А, то середній квадрат відхилень від цього не зміниться:
2. Якщо всі значення варіант поділити на будь-яке стале число і, то дисперсія зменшиться внаслідок цього в і2 разів, а середнє квадратичне відхилення — в і разів:
3. Якщо обяичлити квадрат відхилень від будь-якої величини А, що тією чи іншою мірою відмінна від середньої арифметичної , то він завжди буде більшим за середній квадрат відхилень (дисперсію) σ2, обчислений від середньої арифметичної σА2 > σχ2, причому більший на певне значення – квадрат різниці між середньою і середньою і цією величиною, тобто на
або
Дисперсія від середньої величини має властивість мінімальності, тобто вона завжди менша від дисперсії, обчисленої від будь-яких інших величин. У такому випадку, коли величину А прирівняти до нуля, то:
або
Отже, дисперсія ознаки, або середній квадрат відхилень σ2х дорівнює різниці між середнім квадратом значень ознаки %2 і квадратом середнього значення ознаки. Таким чином, не обчислюючи відхилень можна обчислити дисперсію. Наприклад: