Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Контакти
 


Тлумачний словник






Двоїсті оцінки. Стійкість оптимальних планів прямої та двоїстої задач.

Двоїсті пари задач лінійного програмування бувають симет­ричні та несиметричні.

У симетричних задачахобмеження прямої та двоїстої задач є нерівностями, а змінні обох задач можуть набувати лише не­від'ємних значень.

У несиметричних задачахобмеження прямої задачі можуть бути записані як рівняння, а двоїстої — лише як нерівності. У цьому разі відповідні змінні двоїстої задачі набувають будь-якого значення, не обмеженого знаком.

Різні можливі форми прямих задач лінійного програмуван­ня та відповідні їм варіанти моделей двоїстих задач наведено далі.

Пряма задача   Двоїста задача
  Симетричні  
 
 
  Несиметричні  
 
 

 

3.3. Основні теореми двоїстості задач та їх економічний зміст.

Між прямою та двоїстою задачами лінійного програмування іс­нує тісний взаємозв'язок, який випливає з наведених далі теорем.

! Перша теорема двоїстості. Якщо одна з пари двоїстих за­дач має оптимальний план, то інша задача також має розв'язок, причому значення цільових функцій для оптимальних планів до­рівнюють одне одному, тобто ,і навпаки.

Якщо ж цільова функція однієї з пари двоїстих задач не обмежена, то друга задача взагалі не має розв'язків.

Якщо пряма задача лінійного програмування має оптимальний план X*, визначений симплекс-методом, то оптимальний план двоїстої задачі Y* визначається зі співвідношення

де — вектор-рядок, що складається з коефіцієнтів цільової функції прямої задачі при змінних, які є базисними в оптимальному плані; D-1— матриця, обернена до матриці D, складеної з базисних векторів оптимального плану, компоненти яких узято з початкового опорного плану задачі. Обернена матриця D-1завжди міститься в останній симплекс-таблиці в тих стовпчиках, де в першій таблиці містилася одинична матриця.

За допомогою зазначеного співвідношення під час визначення оптимального плану однієї з пари двоїстих задач лінійного програмування знаходять розв'язок іншої задачі.

! Друга теорема двоїстості. Якщо в результаті підстановки оптимального плану прямої задачі в систему обмежень цієї задачі i-те обмеження виконується як строга нерівність, то відповідний i-й компонент оптимального плану двоїстої задачі дорівнює нулю.

Якщо i-й компонент оптимального плану двоїстої задачі додатний, то відповідне i-те обмеження прямої задачі виконується для оптимального плану як рівняння.

! Третя теорема двоїстості. Двоїста оцінка характеризує приріст цільової функції, який зумовлений малими змінами вільного члена відповідного обмеження.

Економічний зміст третьої теореми двоїстості полягає в тому, що відповідна додатна оцінка показує зростання значення цільової функції прямої задачі, якщо запас відповідного дефіцитного ресурсу збільшується на одну одиницю.

3.4. Після оптимізацій ний аналіз задач ЛП.

Розглянемо застосування теорії та співвідношень двоїстості на конкретних прикладах.

 

Задача 3.1. До наведеної задачі лінійного програмування записати двоїсту задачу. Розв'язати одну з них симплекс-методом та визначити оптимальний план іншої задачі.

Розв'язування. Перш ніж записати двоїсту задачу, необхідно пряму задачу звести до відповідного вигляду. Оскільки цільова функція Z максимізується і в системі обмежень є нерівності, то вони повинні мати знак « £ ». Тому перше обмеження моделі по множимо на

(-1). При цьому знак нерівності зміниться на протилежний. Отримаємо:

Тепер за відповідними правилами складемо двоїсту задачу:

Оскільки записані задачі симетричні, будь-яку з них можна розв'язати симплекс-методом. Наприклад, визначимо спочатку оптимальний план прямої задачі. Для цього застосуємо алгоритм симплекс-методу.

У системі векторів для утворення початкового одиничного базису відсутній вектор . Тому використаємо штучну змін ну в першому обмеженні.

3. Розширена задача лінійного програмування буде така:

У цій задачі та — базисні змінні, а — вільні. Нехай , тоді Перший опорний план задачі:

4. Подальше розв'язування прямої задачі подано у вигляді симплекс-таблиці:

Базис План -5 М q
-М -1 5/3
-М -М -2 -М М  
-1 -1   -3 - 2/3
-2 2 + М  
5/3 2/3 2/3 -1/3 1/3 1/3 -1
10/3 19/3 2/3 0 + М

 

З останньої симплекс-таблиці бачимо, що оптимальний план прямої задачі

Згідно зі співвідношенням двоїстості за першою теоремою можна записати, що оптимальний план двоїстої задачі існує і

де = (2; 0) та міститься в стовпчику «Сбаз» останньої симплекс-таблиці;

 

він також міститься в останній симплекс-таблиці у стовпчиках змінних «» та «», які утворювали початковий базис. Отже,

Застосовуючи до розв'язування прямої задачі симплекс-метод, ми знайшли її оптимальний план, а потім визначили оптимальний розв'язок двоїстої задачі за допомогою співвідношень першої теореми двоїстості.

 

Задача 3.2. До наведеної далі задачі лінійного програмування записати двоїсту задачу. Розв'язавши двоїсту задачу графічно, визначити оптимальний план прямої задачі.

Розв'язування. За відповідними правилами побудуємо двоїсту задачу:

Зауважимо, що задачі несиметричні, і тому змінна , що відповідає рівнянню в системі обмежень прямої задачі, може мати будь-який знак, а змінна — лише невід'ємна.

Двоїста задача має дві змінні, а отже, її можна розв'язати графічно (рис. 3.1).

Рис. 3.1

Найбільшого значення цільова функція двоїстої задачі F досягає в точці B многокутника ABCD. Її координати:

тобто

Оптимальний план прямої задачі визначимо за допомогою співвідношень другої теореми двоїстості.

Підставимо у систему обмежень двоїстої задачі і з'ясуємо, як виконуються обмеження цієї задачі:

Оскільки перше обмеження для оптимального плану двоїстої задачі виконується як строга нерівність, доходимо висновку, що перша змінна прямої задачі дорівнюватиме нулю (перша частина другої теореми двоїстості).

Тепер проаналізуємо оптимальний план двоїстої задачі. Оскільки друга компонента плану додатна, доходимо висновку, що друге обмеження прямої задачі для виконуватиметься як строге рівняння (друга частина другої теореми двоїстості).

Об'єднуючи здобуту інформацію, можна записати систему обмежень прямої задачі як систему двох рівнянь, в якій , та визначити решту змінних:

тобто

Умова виконується, і тому є оптимальними планами відповідно прямої та двоїстої задач.

 

Задача 3.3. Визначити, чи оптимальні такі плани сформульованої задачі лінійного програмування:

Розв'язування.Принцип розв'язування задач такого типу ґрунтується на використанні другої теореми двоїстості. Необхідно побудувати двоїсту задачу та припускаючи, що відповідний план X є оптимальним, визначити оптимальний розв'язок двоїстої за дачі. Якщо при цьому екстремальні значення цільових функцій збігатимуться, то припущення правильне. Протилежного висновку можна дійти в таких випадках.

1. Якщо запропонований план X недопустимий, тобто не задовольняє систему обмежень прямої задачі.

2. Якщо визначений план двоїстої задачі недопустимий, тобто не задовольняє всі обмеження двоїстої задачі.

3. Якщо визначений план двоїстої задачі допустимий, але для нього екстремальне значення цільової функції F не дорівнює значенню функції Z, тобто не виконується умова першої теореми двоїстості.

Запишемо двоїсту задачу до прямої задачі лінійного програмування:

Перевіримо запропоновані плани на оптимальність.

1. Підставимо його в систему обмежень прямої задачі:

Обидва обмеження виконуються і тому X = (8/7; 3/7; 0) є допустимим планом прямої задачі. Припустимо тепер, що зазначений план є оптимальним планом прямої задачі. Тоді для нього

Z = 12·8/7 + 4·3/7+ 2·0=12.

Скористаємося другою теоремою двоїстості та визначимо відповідний план двоїстої задачі. Оскільки , то згідно з другою частиною другої теореми двоїстості можна записати перше та друге обмеження як рівняння і визначити і :

Підставимо ці значення в третє обмеження системи двоїстої задачі:

Для визначених значень ; це обмеження не виконується, і тому відповідний план є недопустимим планом двоїстої задачі. Унаслідок цього наше припущення, що є оптимальним планом вихідної задачі, виявилося помилковим.

2. Х = (0; 1/5; 8/5)Підставимо цей план в систему обмежень прямої задачі:

План допустимий і для нього Z=12×0-4× 1/5 + 2×8/5 = 12/5.

Визначимо відповідний план двоїстої задачі. Оскільки компоненти та додатні, то друге та третє обмеження двоїстої задачі можна записати як рівняння:

Перевіримо, що виконується перше обмеження двоїстої задачі для визначених значень та : 2 • 8/5 + 2/5 = 18/5 < 12. Отже, перше обмеження виконується, і тому Y = (8/5; 2/5) є допустимим планом двоїстої задачі. Для нього F = 8/5 + 2 • 2/5 = 12/5 = Z. З огляду на викладене можна зробити висновок, що є оптимальним планом двоїстої задачі, а - оптимальним планом прямої задачі.

Наше припущення відносно запропонованого плану виявилося правильним.

3. Х= (1/3; 0; 1/3). Для цього плану обмеження прямої задачі виконуються так:

Оскільки X= (1/3; 0; 1/3) є недопустимим планом, то він не може бути також оптимальним планом прямої задачі.

Отже, перевірка запропонованих планів на оптимальність дала такі результати: а) ні; б) так, в) ні.


 


Читайте також:

  1. Агрегативна стійкість і коагуляція колоїдних розчинів
  2. Агрегативна стійкість, коагуляція суспензій. Методи отримання.
  3. Агрегативна стійкість.
  4. Бізнес-планування інвестиційного проекту. Розробка планів фінансового проекту
  5. Взаємне розташування прямої та площини.
  6. Взаємне розташування прямої та площини.
  7. Види бізнес-планів та їх структура
  8. Види внутріфірмового планування і система планів підприємства
  9. Види планів з питань персоналу
  10. Види планів з праці. Показники праці як складова бізнес-плану
  11. Види планів щодо різних критеріїв
  12. Визначення множини допустимих планів задачі ЛП




Переглядів: 2221

<== попередня сторінка | наступна сторінка ==>
ТЕОРІЯ ДВОЇСТОСТІ ТА АНАЛІЗ ЛІНІЙНИХ МОДЕЛЕЙ ОПТИМІЗАЦІЙНИХ ЗАДАЧ | АНАЛІЗ ЛІНІЙНИХ МОДЕЛЕЙ ЕКОНОМІЧНИХ ЗАДАЧ

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

 

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.004 сек.