![]()
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах
РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ" ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах Гендерна антидискримінаційна експертиза може зробити нас моральними рабами ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів
Контакти
Тлумачний словник Авто Автоматизація Архітектура Астрономія Аудит Біологія Будівництво Бухгалтерія Винахідництво Виробництво Військова справа Генетика Географія Геологія Господарство Держава Дім Екологія Економетрика Економіка Електроніка Журналістика та ЗМІ Зв'язок Іноземні мови Інформатика Історія Комп'ютери Креслення Кулінарія Культура Лексикологія Література Логіка Маркетинг Математика Машинобудування Медицина Менеджмент Метали і Зварювання Механіка Мистецтво Музика Населення Освіта Охорона безпеки життя Охорона Праці Педагогіка Політика Право Програмування Промисловість Психологія Радіо Регилия Соціологія Спорт Стандартизація Технології Торгівля Туризм Фізика Фізіологія Філософія Фінанси Хімія Юриспунденкция |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Числові характеристики статистичного розподілу
Закон розподілу випадкової величини Х характеризує її з ймовірної точки зору. Між тим при вирішенні багатьох практичних задач достатньо знати тільки окремі її числові характеристики, що відображають найбільш істотні риси розподілу випадкової величини. Ми уже познайомилися з основними числовими характеристиками випадкових величин: математичним сподіванням, дисперсією, початковими та центральними моментами, асиметрією та ексцесом. Для статистичного розподілу існують такі ж самі числові характеристики. Справа зводиться до того, щоб по результатам експериментів знайти формули їх обчислень. Так аналогічно для математичного сподівання випадкової величини Х є середнє арифметичне результатів спостережень
де хі – значення випадкової величини в кожному і-ому досліді; n – кількість дослідів. Величину
Аналогією дисперсії випадкової величини Х є статистична дисперсія, що обчислюється за формулою
В методі моментів обчислюють статистичні початкові та центральні моменти будь-якого порядку за формулами
Для статистичного ряду розбитого на групи, тобто для статистичної сукупності маємо
де nі - кількість результатів в і-ій групі;
Аналіз формул (4.20), (4.21) і (4.22) показує, що середнє арифметичне Слід зазначити, що при виведенні формул в ММП передбачали, що результати експерименту незалежні і проводились в однакових умовах. Тобто комплекс умов: об’єкт, суб’єкт, прилад, зовнішнє середовище і метод вимірювання були незмінними. Такі виміри називають рівноточними. При цьому дисперсії окремих вимірів будуть однаковими, тобто Це дозволяє нам стверджувати, що при рівноточних вимірах найближчим значенням вимірюваної величини є середнє арифметичне Проте на практиці не завжди можна зберегти незмінність комплексу умов. Тоді кожен результат експерименту буде дещо відрізнятися по точності і кожній випадковій величині
х1, х2, ... , хп,
Такі виміри, коли дисперсії Для визначення приблизних значень вимірюваної величини та дисперсії при нерівноточних вимірах, виходячи з того, що
В теорії математичної обробки при нерівноточних вимірах вводять поняття ваги, тобто
де рі - вага виміру, або вага випадкової величини хі. Тоді статистичний ряд (4.29) можна переписати в вигляді х1, х2, ... , хп, р1, р2, ... , рп.(4.32)
Вага рі буде характеризувати міру відносної точності результатів експериментів. При цьому їх можна збільшувати, чи зменшувати на однакове число С. Тоді формула (4.31) буде
Для спрощення вводять поняття середнього квадратичного відхилення одиниці ваги -
а систему рівнянь (4.30) можна переписати у вигляді
Із їх сумісного розв’язання знаходять формули обчислення загальної арифметичної середини
Очевидно оцінка дисперсії одиниці ваги m2 » Dxбуде зміщеною. По аналогії з формулою (4.22) незміщеною оцінкою дисперсії одиниці ваги при нерівноточних вимірах буде
Статистичною оцінкою стандарту або середнього квадратичного відхилення sбуде середня квадратична похибка
При відомому істинному значенню визначуваної величини а її обчислюють за формулою Гаусса
Якщо істинне значення визначуваної величини невідоме, то застосовують формулу Бесселя
де п – число результатів експерименту. Додатковими статистичними характеристиками нормального закону розподілу є асиметріята ексцес. Асиметрія являє собою нормований центральний момент третього порядку, тобто
Ексцес є мірою крутизни і визначається по формулі
де
Приклад 1. В таблиці 4.3 приведені результати експерименту при дослідженні випадкової величини Х. Визначити числові характеристики статистичного розподілу: Таблиця 4.3
Розв’язання. По формулам (4.10) – (4.13) отримаємо
Приклад 2. Із статистичного ряду отримано статистичну сукупність (табл..4.4, рядки 1-7). Обчислити статистичний початковий момент першого порядку Таблиця 4.4
Розв’язання. В рядку 5 визначають загальне середнє статичне. Якщо
Потім обчислюють відхилення середніх групи
Для системи двох випадкових величин(х,у)
Числові характеристики визначають за результатами п-незалежних дослідів, які виконують в однакових умовах по значенням:
Х ® х1, х2, ..., хп; Y ® y1, y2, … , yn. В свою чергу системи випадкових величин (хі, уі) незалежні, а математичні сподівання, дисперсії і кореляційні моменти будуть однакові, тобто
Виходячи з того, що випадкові величини х і у та система (Х,Y)підкоряються нормальному закону розподілу, а математичні очікування
Незміщена та обґрунтована оцінка кореляційного моменту
Статистичний коефіцієнт кореляції
де mx та my обчислюють за формулами
Коефіцієнт кореляції
-1 £ Якщо коефіцієнт кореляції близький до ±1, то між випадковими величинами існує прямолінійний зв’язок. Рівняння регресії визначають за формулами
або
де
Приклад 3. Коефіцієнт Кі нитяного віддалеміра визначався на різних відстанях Dі від точки установки приладу. Обчислити числові характеристики системи випадкових величин (D,К):математичні сподівання, дисперсії та коефіцієнт кореляції. Результати експерименту наведені в табл. 4.5
Таблиця 4.5
Розв’язання. Для наочності обчислення зведемо в табл.4.6
Таблиця 4.6
D визначено в сотнях метрів
Спочатку по формулами (4.43) і (4.44) обчислюють середні арифметичні
В графах 3 і 4 таблиці 4.5 обчислюють відхилення Di і Кі від середніх арифметичних Контроль: суми відхилень повинні дорівнювати нулю, або величині, що обумовлена помилкою закруглення середніх Далі в графах 5 і 6 обчислюють квадрати відхилень і їх суми:
По формулі (4.47) обчислюємо кореляційний момент, а по формулі (4.48) коефіцієнт кореляції
Так як r* = 0,81, що досить близько до 1, то можна передбачити, що між величинами D і K існує прямолінійний зв’язок. Спочатку обчислимо коефіцієнт регресії
По формулі (4.37) рівняння регресії К по D буде
К = 99,5 + 1,32 D - 1,32 × 0,9 ,
або К = 1,32 D + 98,31. По результатам обчислень можна побудувати графік регресії (рис.4.4)
Рис.4.4
Для побудови прямої регресії обчислено значення двох точок К1 = 98,31 при D = 0м і К2 = 99,5 при D = 100м, які наносимо на графік і проводимо через них пряму лінію. Такий спосіб визначення оцінок невідомих параметрів називають точковим, а самі оцінки – точковими. Його недоліками є те, що точкова оцінка
Читайте також:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|