Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Числові характеристики законів розподілу неперервних випадкових величин

Тема 7. Неперервно розподілена випадкова величина

У випадку неперервних випадкових величин (НВВ) математичне сподівання, дисперсія та середнє квадратичне відхилення мають такий же смисл та властивості, як і для дискретних випадкових величин, але обчислюють їх за іншими формулами.

Нехай можливі значення неперервної випадкової величини X заповнюють відрізок [а, b]. Поділимо [a, b] на n частин довжиною

Δx = (b-a)/n.

У кожній частині візьмемо точку ζk, k = 1,2, … , n.

Тоді щільність імовірності f(x) в точці ζk буде f(ζk) - імовірність того, що X прийме значення ζk. Одержимо розподіл НВВ X вигляду

X ζ1 ζ2 ζn
P f(ζ1) f(ζ2) f(ζn)

Сума

характеризує математичне сподівання X тим точніше, чим менше буде Δx ;. Ця сума буде дорівнювати математичному сподіванню М(Х) неперервної величини X, якщо перейти до границі при Δх → 0. Згідно з означенням визначеного інтеграла маємо

Таким чином, доведена

Теорема 1. Якщо неперервна випадкова величина приймає значення у відрізку [a,b] та має щільність імовірності f(x), то її математичне сподівання знаходиться за формулою

(7.1)

Аналогічно доводиться

Теорема 2. Якщо f(x) є щільність імовірності X, неперервна випадкова величина Y є функцією випадкової величини Х} тобто Y = φ(Х), тоді математичне сподівання Y знаходиться за формулою

Зауваження 1. Якщо можливі значення X належать відрізку [а, b], то центр розподілу М(Х) величини X знаходиться, у цьому проміжку тому, що із нерівностей

та умови нормування випливають співвідношення

.

Якщо щільність імовірності f(x) - парна функція, тобто f(-x) =f(x), то центр розподілу X співпадає з початком М(Х)=0. Якщо графік функції f(х) симетричний відносно прямої х = а, то М(X) = а.

Як і у випадку дискретних випадкових величин, дисперсію неперервних випадкових величин X визначають так

(7.2)

а обчислюють за формулою

. (7.3)

Якщо можливі значення X належать лише скінченому проміжку (а, b), то рівності (7.2) та (7.3) приймають вигляд

,

.

Середнє квадратичне відхилення неперервної випадкової величини визначають та обчислюють так

. (7.4)

Приклад 1. Знайти числові характеристики випадкової величини X, яка задана функцією розподілу

Розв’язання. Спочатку знайдемо диференціальну функцію розподілу, тобто щільність імовірності f(х)=F’(x)

Тепер за формулою (7.1) знайдемо математичне сподівання

Дисперсію знайдемо за формулою (7.2)

Середнє квадратичне відхилення одержимо за формулою (7.4)


Читайте також:

  1. I. Доповнення до параграфу про точкову оцінку параметрів розподілу
  2. V. Поняття та ознаки (характеристики) злочинності
  3. Абсолютна величина числа позначається символом .
  4. Абсолютні і відносні величини
  5. Абсолютні і відносні статистичні величини
  6. Абсолютні, відносні та середні величини.
  7. Авоматизація водорозподілу регулювання за нижнім б'єфом з обмеженням рівнів верхнього б'єфі
  8. Автоматизація водорозподілу з комбінованим регулюванням
  9. Автоматизація водорозподілу на відкритих зрошувальних системах. Методи керування водорозподілом. Вимірювання рівня води. Вимірювання витрати.
  10. Автоматизація водорозподілу регулювання зі сталими перепадами
  11. Автоматизація водорозподілу регулюванням з перетікаючими об’ємами
  12. Автоматизація водорозподілу регулюванням за верхнім б'єфом




Переглядів: 1316

<== попередня сторінка | наступна сторінка ==>
Поняття моментів розподілу. | Рівномірний розподіл.

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.223 сек.