Студопедия
Новини освіти і науки:
МАРК РЕГНЕРУС ДОСЛІДЖЕННЯ: Наскільки відрізняються діти, які виросли в одностатевих союзах


РЕЗОЛЮЦІЯ: Громадського обговорення навчальної програми статевого виховання


ЧОМУ ФОНД ОЛЕНИ ПІНЧУК І МОЗ УКРАЇНИ ПРОПАГУЮТЬ "СЕКСУАЛЬНІ УРОКИ"


ЕКЗИСТЕНЦІЙНО-ПСИХОЛОГІЧНІ ОСНОВИ ПОРУШЕННЯ СТАТЕВОЇ ІДЕНТИЧНОСТІ ПІДЛІТКІВ


Батьківський, громадянський рух в Україні закликає МОН зупинити тотальну сексуалізацію дітей і підлітків


Відкрите звернення Міністру освіти й науки України - Гриневич Лілії Михайлівні


Представництво українського жіноцтва в ООН: низький рівень культури спілкування в соціальних мережах


Гендерна антидискримінаційна експертиза може зробити нас моральними рабами


ЛІВИЙ МАРКСИЗМ У НОВИХ ПІДРУЧНИКАХ ДЛЯ ШКОЛЯРІВ


ВІДКРИТА ЗАЯВА на підтримку позиції Ганни Турчинової та права кожної людини на свободу думки, світогляду та вираження поглядів



Теоретико-множинний смисл суми двох цілих невід’ємних чисел

Розглянемо дві задачі.

1) «На тарілці лежать 3 груші і 5 яблук. Скільки всього фруктів на тарілці?»

Задача розв’язується виразом на додавання 3 + 5 = 8, бо мова йде про об’єднання двох множин: множини груш (число елементів – 3) та множини яблук (число елементів – 5). Ці множини не перетинаються. Щоб знайти, скільки всього фруктів на тарілці, треба об'єднати множини груш та яблук і полічити, скільки всього елементів у цьому об’єднанні. Число елементів об’єднання даних множин дорівнює 8; тобто 8 фруктів на тарілці.

2) «Знайти кількість елементів в об’єднанні множин A = {k, l, m, n} та B = {n, o, p}».

Розв’язання. Кількість елементів множини A: n (A) = 4, а кількість елементів множини B: n (B) = 3. За означенням A B = {k, l, m, n, o, p} n(A B) = 6. Але n (A B) ≠ 4 + 3. Чому? Тому, що А В = {n} і, отже,

n (A) + n (B) ≠ n (A B).

Звідси, суму цілих невід’ємних чисел визначають через об’єднання двох множин, що не перетинаються.

 

Означення. Сумою двох цілих невід’ємних чисел а і b називається число елементів в об’єднанні множин А і В, які не перетинаються і таких, що n (А) = а, п (В) = b, тобто а + b = п В), де а = п (А), b = п (В), А В = .

Сума не залежить від вибору двох множин, що не перетинаються, але таких, що n (A) = a і n (B) = b.

Приклади:

1) A = {a, b}, B = {c, d} A B = {a, b, c, d} і А В = , отже, n (A B) = n (A) + n (B) = 2 + 2 = 4, де n (A) = 2, n (B) = 2.

2) A = {Δ, Δ}, B = {Ο, Ο} A B = {Δ, Δ, Ο, Ο} і А В = , отже, n (A B) = n (A) + n (B) = 2 + 2 = 4, де n (A) = 2, n (B) = 2.

 

Дія, за допомогою якої знаходять суму, називається додаванням. Числа, які додаються, називаються доданками.

У початковому курсі математики додавання цілих невід’ємних чисел вводиться на основі виконання практичних вправ, пов’язаних з об’єднанням двох множин предметів (без використання відповідної символіки та термінології). Основним засобом розкриття теоретико-множинного смислу додавання є розв’язування простих текстових задач.

 


Читайте також:

  1. II. Множення круглих багатоцифрових чисел на розрядні числа.
  2. IV. Осмислення учнями знань.
  3. N – чисельність популяції
  4. V. Осмислення знань учнями.
  5. V. Осмислення учнями знань.
  6. V. Осмислення учнями знань.
  7. V. Осмислення учнями знань.
  8. V. Осмислення учнями знань.
  9. V. Осмислення учнями знань.
  10. V. Осмислення учнями знань.
  11. V. Осмислення учнями знань.
  12. V. Осмислення-учнями знань.




Переглядів: 3977

<== попередня сторінка | наступна сторінка ==>
Властивості множини цілих невід’ємних чисел | Існування суми, її єдиність

Не знайшли потрібну інформацію? Скористайтесь пошуком google:

  

© studopedia.com.ua При використанні або копіюванні матеріалів пряме посилання на сайт обов'язкове.


Генерація сторінки за: 0.012 сек.